Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Biomolecules & Therapeutics ; : 107-116, 2019.
Article in English | WPRIM | ID: wpr-719634

ABSTRACT

The global obesity epidemic and associated metabolic diseases require alternative biological targets for new therapeutic strategies. In this study, we show that a phytochemical sulfuretin suppressed adipocyte differentiation of preadipocytes and administration of sulfuretin to high fat diet-fed obese mice prevented obesity and increased insulin sensitivity. These effects were associated with a suppressed expression of inflammatory markers, induced expression of adiponectin, and increased levels of phosphorylated ERK and AKT. To elucidate the molecular mechanism of sulfuretin in adipocytes, we performed microarray analysis and identified activating transcription factor 3 (Atf3) as a sulfuretin-responsive gene. Sulfuretin elevated Atf3 mRNA and protein levels in white adipose tissue and adipocytes. Consistently, deficiency of Atf3 promoted lipid accumulation and the expression of adipocyte markers. Sulfuretin’s but not resveratrol’s anti-adipogenic effects were diminished in Atf3 deficient cells, indicating that Atf3 is an essential factor in the effects of sulfuretin. These results highlight the usefulness of sulfuretin as a new anti-obesity intervention for the prevention of obesity and its associated metabolic diseases.


Subject(s)
Animals , Mice , Activating Transcription Factor 3 , Adipocytes , Adiponectin , Adipose Tissue, White , Diet , Insulin Resistance , Metabolic Diseases , Mice, Obese , Microarray Analysis , Obesity , RNA, Messenger
2.
Chinese Pharmaceutical Journal ; (24): 1802-1806, 2014.
Article in Chinese | WPRIM | ID: wpr-860038

ABSTRACT

OBJECTIVE: To study the chemical constituents whole plant of Bidens frondosa L.

3.
Experimental & Molecular Medicine ; : 628-638, 2010.
Article in English | WPRIM | ID: wpr-162254

ABSTRACT

NF-kappaB activation has been implicated as a key signaling mechanism for pancreatic beta-cell damage. Sulfuretin is one of the main flavonoids produced by Rhus verniciflua, which is reported to inhibit the inflammatory response by suppressing the NF-kappaB pathway. Therefore, we isolated sulfuretin from Rhus verniciflua and evaluated if sulfuretin could inhibit cytokine- or streptozotocin-induced beta-cell damage. Rat insulinoma RINm5F cells and isolated rat islets were treated with IL-1beta and IFN-gamma to induce cytotoxicity. Incubation of cells and islets with sulfuretin resulted in a significant reduction of cytokine-induced NF-kappaB activation and its downstream events, iNOS expression, and nitric oxide production. The cytotoxic effects of cytokines were completely abolished when cells or islets were pretreated with sulfuretin. The protective effect of sulfuretin was further demonstrated by normal insulin secretion of cytokine-treated islets in response to glucose. Treatment of mice with streptozotocin resulted in hyperglycemia and hypoinsulinemia, which was further evidenced by immunohistochemical staining of islets. However, the diabetogenic effects of streptozotocin were completely prevented when mice were pretreated with sulfuretin. The anti-diabetogenic effects of sulfuretin were also mediated by suppression of NF-kappaB activation. Collectively, these results indicate that sulfuretin may have therapeutic value in preventing beta-cell damage.


Subject(s)
Animals , Male , Mice , Rats , Benzofurans/pharmacology , Cell Line , Cytokines/adverse effects , Diabetes Mellitus, Experimental/drug therapy , Flavonoids/pharmacology , Hypoglycemic Agents/pharmacology , Insulin-Secreting Cells/drug effects , Mice, Inbred ICR , NF-kappa B/metabolism , Rats, Sprague-Dawley , Rhus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL